Gas in dusty disks around main-sequence stars

Alexis Brandeker Stockholm Observatory

Collaborators: René Liseau, Göran Olofsson, Pawel Artymowicz, Malcolm Fridlund, Taku Takeuchi, Inga Kamp, Philippe Thébault

Gas disks?

- Thermal emission from cold gas generally difficult to observe
- Gas/dust relations unreliable
- Gas disk evolution critical for gas giant formation, in particular for the formation mechanisms of hot Jupiters

b Pictoris

 First spatially resolved circumstellar dust disk (Smith & Terrile 1984)

- Relatively old star having disk, ~20 Myr
- \diamond Edge-on \Rightarrow star seen through disk

The disk gas of b Pic

- Metallic gas discovered in absorption by Slettebak
 (1975) and Hobbs et al. (1985)
- Substantial radiation pressure (Beust et al. 1989, Lagrange et al. 1998)
- Upper limits on hydrogen:

```
N(HI) = "a few" 10^{19} cm^{-2} (Freudling et al. 1995)
```

 $N(H_2) = 3 \times 10^{18}$ cm⁻² (Lecavelier des Etangs et al. 2001)

An unsolved problem

Observed*

Free-ascend solution

TPF/Darwin conference in San Diego, Alexis Brandeker 2004-07-26 *from Lagrange et al. (1998)

VLT/UVES observations

Selected results

- 88 lines detected in emission from the β Pictoris disk from Na I, Fe I, Ca II, Ti I, Ti II, Ni I, Ni II, Cr I and Cr II
- Disk emission observed extending to the limits of the observations, from 13 AU out to 323 AU distance from the star, and 77 AU above disk plane TPF/Darwin conference in San Diego, Alexis Brandeker 2004-07-26

Modeling

$$n(r,h) = n_0 \left[\left(\frac{r}{r_0} \right)^{2a} + \left(\frac{r}{r_0} \right)^{2b} \right]^{-\frac{1}{2}} \exp \left[-\left(\frac{h}{\alpha r} \right)^2 \right]$$

All Na I seen in absorption is accounted for by the radial density law derived from emission.

What is braking the gas?

- Possibility 1: The metallic gas is braked by a not-yet detected gas component, not affected by radiation pressure
- Possibility 2: Magnetic forces are at work, braking the metals in an ionised state

Gas friction

- ♦ From cosmic abundance: N(H_{tot})~10¹⁹ cm⁻², insufficient to brake gas
- ❖ Required hydrogen column density $N(H_{tot}) \sim 10^{21} \text{ cm}^{-2}$, in violation of observational constraints $[N(H_{tot}) = 10^{19} \text{ cm}^{-2}]$
- Required oxygen column density is N(O)~10²⁰ cm⁻²

Magnetic force

- Metallic gas largely ionised
 ⇒ sensitive to exceedingly
 weak magnetic fields (µG)
- Poloidal field does not help, toroidal field required
- Completely ad-hoc

Depletion by diffusion

- Gas particles diffuse out of the β Pic system, driven by radiation pressure
- The diffusion velocity depends on how strongly an ion is affected by RP
- Magnetic braking is sensitive to the gas ionisation, while gas drag is not

Depletion by diffusion

Depletion ratios from radiation pressure		
Scenario	d(Fe) / d(Na)	d(Fe) / d(S)
Free ascend	8.1	20
Magnetic brakes	0.7	0.0006

0.65

Rough estimates only – sensitive to detailed ionisation structure. Observed depletion ratio d(Fe)/d(S)~0.3 (Lagrange et al. 1998).

Gas drag

2.8

Fe I level population

- Model Fe I atom with 842 levels and 9758 line transitions
- Lowest 123 levels
 coupled by 7140
 electron collision cross
 sections

Fe I level population

Future

- ◊ Current Spitzer GTO β Pic programme (PI Werner) should be capable of detecting $N(H_2) = 5 \times 10^{20} \text{cm}^{-2}$ (model dependent)
- Recent discovery of β Pic-like edge-on disk AV Microscopii may provide clues to disk gas properties, studying the disk gas in both absorption and emission.
- Observing other accessible dust disks at high spectral and spatial resolution to detect gas in emission will help establish gas/dust relations and the evolution of gas in disks.

TPF-C with a Na I filter

β Pictoris - Na I D₂

10 AU 0.5"

Further details

http://www.astro.su.se/ ~alexis/thesis.eng.html

TPF/Darwin conference in San Diego, Alexis Brandeker 2004-07-26

Disk lifetimes

